

TOWARDS PRACTICAL AUTONOMOUS DEEP SPACE NAVIGATION USING X-RAY PULSAR TIMING: INSTRUMENTATION ASPECTS

<u>Adrian Martindale¹</u>, George Fraser¹, Lucy Heil^{1,3}, David Hindley², Philippa Molyneux¹, John Pye¹, Setnam Shemar², Robert Warwick¹, Andrew Lamb²

¹University of Leicester, Leicester, UK, ² National Physical Laboratory, Teddington, UK

E-mail: am136@le.ac.uk

XNAV instrumentation

- Similar to what is needed for existing science concepts
 - Detect Pulsar signals
 - Minimise error sources (e.g. sky background, internal background, pointing stability, ...)
 - Determine position of spacecraft
- BUT needs low resources!
- Technical Requirements
 - High time resolution (<1µs, goal <300ns)
 - High collecting area (~50cm² @1keV for imager)
 - Energy range ~0.5-8keV
 - Low background
 - Maintain accurate OBT standard

How to minimise resources

- Collimators vs Imaging
 - Collimators restrict FoV to reduce sky background
 - $A_{detector} = A_{collimator} \rightarrow high non-sky background$
 - Imagers concentrate flux onto smaller detector (large reduction in background)
 - $A_{detector} = A_{collecting} \rightarrow reduced background$
- Most timing missions to-date use collimated instrumentation and are a *dedicated payload*
 - i.e. are designed for science return not optimised as a satellite subsystem
- Optimised subsystem = minimum mass/size for maximum performance

 \rightarrow Current focus in the literature on concentrators and imaging

Examples

- RXTE PCA
 - 1° FoV, 4.4µs timing, needed 10 clock calibrations per day
- USA
 - 1.2x1.2° FoV collimated GPC
 - $2\mu s$ timing, 2000 cm² detector
- NICER
 - the first attempt to use the imaging advantage to optimise XNAV performance
 - Mass:165kg, Volume: 0.8 m³, Power: ~ 80-110W.
- \rightarrow Not optimised for deep space application

Overview of our study

- Strong focus on imaging
 - Maturing low mass optics
 - Capable small detectors (low mass / power / background / ...)
 - Offers mechanism to reduce the mass of instrumentation and provide high S:N

 \rightarrow viable deep-space implementation?

- Note:
 - Considering collimated solutions in principle valid possible to generate larger areas
 - very difficult to overcome the imaging advantage within scope of a realistic deep space payload

Optics

- Existing optics technologies
 - Foil shells, Slumped glass, Silicon pore optics
 - See talk by RW
 - MCP optics (most promising mass)
 - MCPs are glass plates with millions of microscopic pores etched in manufacture
 - square pores \rightarrow reflecting surfaces
 - Manufactured by Phtonis SAS (Brive, France)
 - Many geometries can be mimicked with square pore MCPs
 - Simplicity & compactness key for XNAV

X-ray

2.2/1.3/0.9 mm

X-ray

4000mm

Detector

20 micror 6 microns

ont MCP o

210mm

1000mm

1333mm

r MCP opt

Optic Geometries - Wolter I

MCPs use conical approximation to Wolter I

Example: MIXS

- One of 11 instruments on ESA/JAXA BepiColombo mission to Mercury
- Light Weight X-ray telescope (MIXS-T) could be a pathfinder for XNAV
 - Deep space implementation of Wolter I imaging X-ray optic.
 - Total Mass of telescope = 3.2kg (optic, tube, electron diverter, detector FEE)
- Gives ~50cm² (ideal) effective area @1keV
- DEPFET active pixel sensor detector
- Designed for planetary science goals but indicates a roadmap for XNAV and could be used commercially e.g. asteroid composition

Optic Geometries - Kirkpatric Baez

MCPs use planar approximation

Optic Geometries

Lobster eye geometry (can be optimised for small FoV)

Distance form centre of optic (mm)

Planar Lobster optic

Slumped lobster optic

Available technology

- Optics for lobster/Wolter systems are well proven.
- Resolution
 - ~4-5 arcmin proven for lobster
 - improvement possible tech. development
 ~1.5-2 arcmin demonstrated for planar arrays
 - ~8-10 arcmin demonstrated for wolter improvement possible with tech. development.

Future technology

- NF lobster
 - Simplest geometry
 - All manufacturing proven
 - Demonstration of array functionality needed
 - Implementation being developed for SVOM MXT
- KB
 - Much simpler than Wolter
 - significantly improved resolution possible
 - Doesn't suffer some of the error sources
 - Demonstration of tandem pair needed

Detector types

- APDs
 - Gain leads to lower energy resolution but higher readout speed
 - Low E threshold ~0.5keV possible
- SDDs
 - Fast readout demonstrated, good maturity, high performance
 - E.g. "super fast silicon drift detector" from AMPTEK
 - very good energy resolution
 - low energy thresholds of <200eV
 - high quantum efficiency (more efficient filter than the 8 micron Be foil used as standard)
 - Peaking time <1µs
- DePFET detectors possible ideal technology (fast, small pixels, excellent energy resolution)

Clock and time transfer

- Time stability
 - During single observations fractional stability ~ 10⁻¹² needed & the clocks that flew on Giove-B would offer precision greater than needed
 - However, maintaining accuracy with respect to UTC over deep-space mission timescales is challenging
 - Improved stability of atomic clock needed(~10 years?)
 - NASA developing Mercury ion trap atomic clock that may offer required stability
 - Time transfer link for Earth most likely needed to calibrate relative to terrestrial time standard

- Signal-to-noise ratio (S:N) per unit
 mass versus focal length.
 - Signal strength of crab → flat line
 - SN:mass increases for longer F, hence a longer telescope is more massefficient than parallel modules

(because $Aeff \propto F12$)

- range error as a function of focal length.
 - The different order of the pulsars in the two panels is a result of the relative importance of signal strength, the pulse width and pulse period of the various pulsars.
- Assumes a 10⁵s observation.

	Current Technology		Future Technology		
Parameter	Wolter MIXS	Lobster	NF lobster	КВ	Comment
Scientific norformanco					
	1	Λ	2	1	Number of modules proposed
Ontic offective	1	4	2E (10E)		
area (cm ²)	50	24.7 (98.8)	55 (105)	01.5	@ IKEV
Detector active area (cm ²)	0.049	0.049 (0.196)	0.049 (0.147)	0.049	~2.5 mm diameter APD per module
Focal plane scale (arcmin/mm)	3.44	3.44	3.44	3.44	Tan ⁻¹ (1/f)
All up mass estimate (kg)					
Optic mass	1.8	1.5 (6)	1.5 (4.5)	~2.5	per module KB
Detector/housing	2	2 (8)	2 (6)	2	Estimate
DPU	1.5	1.5	1.5	1.5	SSTL OBC750 LEO
PSU	1	1	1	1	Estimate incl. housing
Harness and misc.	1	1 (2)	1 (1.5)	1	Ancillary items
TOTAL (kg)	7.3	7.0 (18.5)	7.0 (14.5)	8.0	Note KB mass estimate higher only because of less mature design – implicit margin
Detector technology	SDD	SDD	SDD	SDD	Small PSF allows use of SDDs
Power consumption estimate (W)	15.9	15.9 (24.7)	15.9 (21.8)	15.9	Including: DPU (10W), detector and FEE (0.25W), analogue electronics (2W), PSU efficiency (70%) Excluding: thermal control (assumed to be a spacecraft radiator)
Volume (mm³) Telescope: DPU: PSU:	πx130 ² x 1000 320x170x55 320x170x55	200x200x1000 (x4) 320x170x55 320x170x55	200x200x1000 (x3) 320x170x55 320x170x55	260x260x100 0 320x170x55 320x170x55	PSU estimated as same board area and same box dimensions as DPU

Outstanding questions

- Satellite subsystems not reviewed in detail
 - Steering mechanism, thermal control (radiator and heat pipes)
 - Steering mechanism may be mass driver,
 - cooling not outside well proven (simple) systems (TEC / radiator) ~ -20°C
 - Onboard Clock & time transfer
 - DPU/PSU parameterised from commercial available units
 - Astrium GDPU or SSTL OBC750 LEO
 - Low mass, proven technology
 - Questions about reliability need to be addressed are these units designed for instrument operation rather than critical systems? In principle mission critical use in deep space requires more qualification/validation
- Initial position fix needed to limit search area for "cold start" e.g. via a system like DSN or inertial sensors

Feasibility of an XNAV demonstrator

- Existing technologies could be used to derive a demonstrator
 - "MIXS-like" optic based on MCPs
 - Development program for optics would provide better performance, more massoptimisation, lower cost
 - NICER-like detector system based on SDDs
 - Development program for detector could yield high time resolution imaging detector
 - Development of electronics and time-tagging algorithms needed
 - High stability clock needed

-Low mass, low risk, limited development, ...

Summary

- Current proposed methods of realising XNAV instrumentation are summarised.
 - Existing ideas in the literature are extremely capable but very massive and resource heavy as they are designed for dual-purpose
 - Our study concentrates on what is possible with low resource instrumentation
- Essential technology for a compact, low resource XNAV is available but not well optimised.
- A technology development program is needed
 - A relatively straightforward development path exists for a truly optimised instrument configuration.
 - Development should focus on the following key areas:
 - Realising simpler, optic configuration based on a narrow field Lobster and/or an MCP KB system
 - High speed photon time tagging electronics and software algorithms
 - High stability deep-space qualified atomic clock and/or methodologies for calibrating to UTC via the deep space network